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Introduction

Synthesis is the process of converting a 
digital design written in a hardware 
description language into a low-level 
implementation consisting of primitive logic 
gates. 
Today, synthesis is at RTL level.



Potential benefits for high level synthesis

Small code size
Faster Modeling, Simulation and Verification 
=>Shorter design time
High reusability module: change performance, 
Clock, functionality and communication 
protocol is easier than RTL module.
Exploring design space



NEW drive forces

Time to market is sometime outweigh 
performance
System increase in size and complexity
Availability of high performance FPGA

Two groups people are pushing the 
development of HL synthesis: 

existing HW designer: expertise in HW system 
SW designer and application developer: little 
knowledge of HW, but lots of experience in system



Elements of HL synthesis

High level synthesis include two part:
Description Language
Synthesis Methodology 



HL Description Language Requirement

Concurrency 
The explicit description of concurrency is essential to the optimum 
description of parallel algorithms, deterministic synthesis and verification. 
It enables designer control over the most critical areas of design. 

Timing
Timing is essential for Synthesis to implement clocked processes for 

hardware and define the clocks, registers and signals. 

Data Types
Both abstract data type and low level hw data type are needed

Communications 
Method for communications between functional blocks, I/O and on-chip 
resources (potentially between clock domain)



Migration of languages
Tradition high level language, such as C/C++, have no :

notion of time
No event sequencing

Concurrency
But H/W is inherently concurrent

H/W Data Types
No ‘Z’ value for tri-state buses

C type HW description language added new features:
HW timing
Concurrency
Structure



Migration of languages

C-based languages, coupled with block-based 
approaches are the most popular method of describing 
ESL design and Transaction Level Models (TLM). 

Handel-C and SystemC are two popular C-based 
languages deployed in ESL design and synthesis.



HardwareC --- Constraint-based
The constraints approach uses labels or tags inside the 
code to direct the synthesis. It extend C with a notion of 
concurrent processes, message passing, timing 
constraints via tagging, resource constraints, explicit 
instantiation of models, and template models.



Handel-C, based on the ANSI-
C standard, is a mature, high-
level language that adds a 
minimum of easy-to-
understand hardware-oriented 
constructs for design 
implementation
the concurrency is explicit 
using the par (parallel) 
statement. Timing is controlled 
by rules within the language 
and there are additional types 
and communications (e.g. the 
chan (channel) statement).

Handel-C ---Explicit control, 
rules-based timing and additions-based



Handel-C Example Code



Handel-C Example Code



SystemC ----Explicit control and C++ -based

SystemC is a library of C++ 
classes, global functions, 
data types and a simulation 
kernel that can be used for 
creating cycle-accurate 
simulators of hardware 
architecture.
The language provides 
hardware-oriented 
constructs within the context 
of C++ as a class library 
implemented in standard 
C++. 



SystemC levels of abstraction
There are currently 3 broad categories of classes, which make up
levels of abstraction:

1. RTL: The RTL classes make up the bulk of SystemC, and 
implement a modular structure, process concurrency, and bit-
accurate data types. This layer implements all of the features that 
are normally found in the RTL subset of an HDL (e.g. Verilog).

2. Communication: The communication classes implement data 
transmission and synchronization protocols which are built on top of 
the basic process concurrency controls of the RTL layer. These 
classes are typified by channels which pass data through module 
ports with a handshake.

3. Verification: Verification classes make up a set of abstractions 
which are used for creating test benches. A test bench is really just 
a (more or less) abstract model of the design under test’s 
environment. Verification classes provide features for randomization, 
data logging, and protocol matching.



SystemC Example Code



SystemC Example

The multiplier template is intended to be used inside a thread, or a clock thread 
that is sensitive to a clock edge. The approach used in this example is an explicit 
description of concurrency. There are explicit clocks in the timing described using 
wait statements, and the SystemC data types sc_int and sc_uint are used. 







SystemC vs. SystemVerilog
Both languages support concepts such as signals, events, interfaces, 
and object orientation, yet each language has its distinct application 
focus
SystemC

extends the C++ scope towards hardware
effective for writing abstract TL models for architectural exploration or 
performance modeling
Good for HW SW co-design, creating virtual prototypes for early 
software development.

SystemVerilog
extends the Verilog scope to object orientation and testbenches
effective for designing advanced testbenches, for both RTL and TL 
models
suitable for describing the final RTL design, Good for synthesis
extensive tool support available



News from Industry

SystemC is extended to analog design. an 
analog/mixed-signal working group has been proposed 
in Open SystemC Initiative (OSCI).

SystemC transaction-level modeling (TLM) and SystemC
Verification standards are going to be brought to the 
IEEE this year

A proposed standard SystemVerilog synthesis subset is 
getting good reviews from most synthesis providers, 
which might overcome the portability problem when 
people work with multiple vendors' tools.



Problem definition of HL synthesis

Input: High Level Language program
Output: RTL DHL file or Gate level net-list

Outputting RTL file is more appealing because there 
are proven technologies to transfer RTL to GDS-II 
(Graphic Data System ); and a lot of available tools to 
do the job.
Outputting RTL also enable reuse of existing IP



Behavioral vs. RTL synthesis

Register-transfer synthesis 
cannot figure out how to share resource, nor can it 
change the schedule of operations
No schedule, No allocation

Behavioral synthesis
Schedule & allocation
Behavioral code does not specify where registers 
should be in the circuit or the details of the cycle 
timing; such decisions are left to the synthesis tool or 
the  designer



Example

A HDL Code



A revised HDL RTL code to share adder

If (q)
Temp1=w;
Temp2=y;

Else
Temp1=x;
Temp2=z;

End
Temp3=temp1+temp2;
If (q)

a=temp3;
Else

b= temp3;
End 



Gajski and Kuhn’s Y-Chart



RLT synthesis

EDIF: Electronic Design 
Interchange Format



Behavior Synthesis



Challenges in synthesis

Discover parallelism from sequential description
Naturally, HL language are sequential rather than parallel. The fully 

automated synthesis of optimum parallel hardware architectures from 
sequential source descriptions, without designer control or guidance, 
remains a basic challenge. The explicit description of concurrency is 
essential to the optimum description of parallel algorithms, deterministic 
synthesis and verification. It enables designer control over the most 
critical areas of design.

Explore design space 
Little information from constrains to guide synthesis
schedule and allocation interact with each other



Stages of the behavioral synthesis

Various behavioral synthesis tools perform these 
activities in different orders using different algorithms. 
Some of these activities or perform them iteratively to 
converge on the desired solution

Lexical processing
Lexical processing parses the high-level language 
source code and transforms it into an internal 
representation. Lexical processing for behavioral 
synthesis is similar to that used in conventional high-
level language compilation.



Stages of the behavioral synthesis

Algorithm optimization
Optimizations that can be performed on the algorithm 
itself include common subexpression elimination and 
constant folding. 

Control/Dataflow analysis
The result of this process is usually a Control/Dataflow 
Graph (CDFG). This determines which values are 
needed prior to computation of other values. No concept 
of time exists in the CDFG.



Stages of the behavioral synthesis
Library processing
Library processing reads the available libraries and 
determines the functional, timing, and area 
characteristics of the available parts.

Resource allocation
Resource allocation establishes a set of functional units 
that will be adequate to implement the design. In many 
behavioral synthesis systems, an initial resource 
allocation is performed and subsequently modified during 
scheduling and/or binding.



Stages of the behavioral synthesis

Scheduling
Scheduling introduces parallelism and the concept of 
time. It transforms the algorithm into an FSM 
representation. Using the data dependencies of the 
algorithm and the latencies of the functional units in the 
library, the operations of the algorithm are assigned to 
specific clock cycles. There are often many possible 
schedules. Directives that constrain the result with 
respect to latency, pipelining, and resource utilization will 
affect the schedule that is chosen.

Functional unit binding
Binding assigns the operations of the algorithm to 
specific instances of functional units from the library.



Stages of the behavioral synthesis
Register binding
The register binding process allocates registers as needed 
and assigns each value to a physical register. Analysis of 
the lifetime of each data value can identify opportunities to 
use the same physical register to store different values at 
different times. 

Output processing
The datapath and finite state machine resulting from all of 
the previous steps are written out as RTL source code in 
the target language. This code can be structured in a 
number of ways to optimize the downstream logic 
synthesis process or to enhance the readability of the 
code. 



Stages of the behavioral synthesis

Register binding

Output processing

Functional unit binding

Library processing

Lexical processing

Control/Dataflow analysis
Algorithm optimization



CSP and TRS

Fundamentally, synthesis High Level language requires 
technology that can translate sequential software 
semantics into parallel, state machine-based hardware
This translation uses languages such as communicating 
sequential processes (CSP) and methodologies such as 
Term Rewriting Systems (TRS) 



CSP:Communicating Sequential Processes
In computer science, Communicating Sequential 
Processes (CSP) is a formal language for describing 
patterns of interaction in concurrent systems. It is a 
member of the family of mathematical theories of 
concurrency known as process algebras, or process 
calculi. 

CSP allows the description of systems in terms of 
component processes that operate independently, and 
interact with each other solely through message-passing 
communication. The relationships between different 
processes, and the way each process communicates 
with its environment, are described using various 
process algebraic operators. Using this algebraic 
approach, quite complex process descriptions can be 
easily constructed from a few primitive elements.



TRS: Term Rewriting Systems

Term Rewriting Systems (TRS) are a well-understood 
formalism from computer science to describing 
concurrent systems that embody asynchronous and 
nondeterministic behavior in their specifications.

A TRS consists of
"terms" which describe hardware states
"rules" which describe behavior. A "rule" captures 
both a state-change (an "action") and the conditions 
under which it can occur. 



TRS description
A TRS consists of a set of terms and a set of rewriting 
rules. The general structure of rewriting rules is:

patlhs if p exprhs

A rule can be used to rewrite a term s if the rule’s left-
hand-side pattern patlhs matches s and the predicate p
evaluates to true. When a rule is applied, the resulting 
term is determined by evaluating the right-hand-side 
expression exprhs in the bindings generated during 
pattern matching.



BASIC SYNTHESIS STRATEGY

Compiler maps a TRS to a synchronous FSM by
Mapping TRS terms to storage elements (e.g., 
registers, register files and other abstract datatypes)
Mapping TRS rules to combinational logic that 
generates next state values and enable signals for 
storage elements



Circuit synthesis
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Circuit synthesis

This function can be broken down into 
its two components:  Π and δ.
The Π function determines a rule’s 
applicability to a term and has the type,
Typeof (patlhs) Boolean. The δ
function, on the other hand, 
determines the
new term in case  evaluates to true.

For hardware synthesis , we break down 
R into actions on individual storage 
elements. For each storage element e 
affected by a rule R, δ gives its next 
state value. Π is the enable signal of all 
the affected registers.





Schedule in TRS

a scheduler that is currently implemented in TRAC that 
makes use of conflict-free (CF) relationships.

an exact test for CF relationship between two arbitrary rule 
instances is expensive. Instead, TRAC performs several 
conservative tests to find as many CF relationships as 
possible. 

First, two rule instances that read and write non-
overlapping parts of the systems are CF. 
If two rule instances do not rewrite the same registers, 
if none of the registers affected by the δ of one is used 
by the Π and δ of the other, and vice versa, then the 
two rules are CF 
If pairs of Π’s to conservatively determine when a pair 
can never be satisfied simultaneously and thus are CF



Schedule in TRS

After TRAC has establish CF relationships between as 
many rule instances as possible, a graph of rule 
instances can be constructed by adding an edge 
between each non-CF pairs. 
Scheduling groups is formed by partitioning the graph 
into connected components. Different groups never 
interfere and can be scheduled independently.
For each group, a round-robin priority encoder can be 
used to map Π to Φ for arbitration. 





TRS Execution Semantics

Synthesis problem: Generate a hardware scheduler that 
allows execution of as many enabled rules as possible at 
each clock without violating the semantics and generate 
all the associated control logic.

While ( some rules are applicable to s )
♦ choose an applicable rule

(non-deterministic)
♦ apply the rule atomically to s

Given a set of rules and an initial term s



"While behavioral synthesis tools offered some great productivity 
advantages over RTL synthesis, we found that most customers were
either not willing to take the QoR [quality of results] hit necessary to 
use these products, or they were not willing to complicate their
verification flow,“ --- Synopsys’s chief executive officer Aart de 
Geus, 2004 

In 2004,  Synthesis giant Synopsys Inc. gave up on a 10-year effort 
to sell Behavioral Compiler and made an "end-of-life" announcement 
for SystemC Compiler, which is based on Behavioral Compiler. 
Cadence Design Systems Inc., meanwhile, has not actively 
marketed the behavioral synthesis technology it acquired from 
Get2Chip Inc

Synthesis performance Evaluation



The design of 2.5 
generation 
Mobile chip

RTL_based Design 
is slow because 
of 

1. RTL_based co-
simulation is not 
feasible because 
RTL is too slow. 

2. SW design has 
to wait unitle the 
hardware finish



TRS PERFORMANCE EVALUATION

Synthesis of the GCD Circuit: Euclid’s Algorithm for 
finding the greatest common divisor (GCD) of two 
integers



TRS PERFORMANCE EVALUATION

Synthesis of the Unpipelined Microprocessor

as the problem size increases, the pay-back of hand optimizations 
diminishes while the effort required increases dramatically. This is 
evident in the synthesis of this example. The TRAC generated RTL and 
a hand-coded Verilog RTL of the unpipelined processor are comparable 
both in size and speed.



Other HL synthesis method

block diagram-based algorithm 
Popular in special application area, such as DSP 
domain. 
With a rich set of domain-specific high-level block 
libraries

algorithm designers can quickly construct complex DSP 
and communication systems at various abstraction levels 
and simulate to verify the desired behavior without 
tedious coding. 



New high level synthesis approach

based on optimized architecture synthesis
using configurable IP as building block. 

combines the notion of design-time configurable IP for 
processors and accelerators, along with design 
exploration and configuration tools to configure the IP 
from C applications. 
offers the promise of being able to create complete 
application engines such as an H.264 video codec or 
a CDMA modem—engines that are completely 
beyond the scope of traditional behavioral synthesis 
technology.



optimized architecture synthesis

Advantages
eliminates the problem of scope by the use of design-
time configurable IP
effectively addresses several major design challenges 
such as verification, system-on-chip (SoC) integration, 
software integration, and timing and physical closure

limitations
success depends on the available IP Library
applications using this approach could be limited 
because of the IP availability



Conclusion

Behavioral synthesis will be a "catalyst" for ESL design
Combined with FPGA, high level synthesis enable rapid 
prototyping, rapid evaluation and more architectural 
exploration. 
Tools available now stirred up a lot of interest but the 
performance of these tools has not been proven from 
industry



Future work

Future work will focus on how to deliver what HL synthesis promise 
to do

Promise 1: reducing the time it takes to go from functional 
specification to verified RTL while also accounting for timing and 
physical closure. 

there's the risk that a designer reduces design capture time, only 
to extend the time it takes to verify the design and complete 
timing and physical closure 
it was difficult to verify the results in any reasonable way, 
because the process of high-level synthesis changed the timing 
of the code (with regard to the cycles in which actions occurred) 
to the extent that it wasn't possible to use the same testbench on 
the pre and post-synthesis representations of the design. It is 
true for present situation. To Improve the verification capability is 
essential. 
When it has errors in design, how to debug and correct them



Future work

Promise2: explore alternative implementations to make 
trade-offs in area, performance, and power.

It outputs "candidate" RTL implementations along with 
reports that help designers pick the best one to route 
through an RTL synthesis tool. 
How to exert constrains to direct synthesis

the user has little control over the quality of the output. the 
input is hard to relate to the output if should the result need 
optimizing.

How to explore the design space
Overcome the local optimization to reach the global 
optimization 



Future work

Promise 3: enable HL reuse for different 
area/performance designs.

RTL has an implied micro-architecture that makes it 
impossible to re-use at significantly different points of 
area or performance
How to design IP in a way that its parameters could 
give the explicit of it area and performance; and this 
parameters could guide synthesis



News from industry
Early this year, Xilinx Inc. has teamed up with a number of 
companies to form a system-level design initiative that it hopes will 
set standards for high-level, software-driven synthesis of FPGAs. 

“expands the reach of ESL solutions and FPGAs to new applications 
and to users who have never before implemented designs in 
programmable logic,”---- Wim Roelandts, president and CEO of Xilinx in a 
statement.  

“Our focus continues to be on providing C-based tools that do not 
require low-level FPGA design skills. The Xilinx ESL Initiative helps 
spread the message that software-to-hardware is a practical and 
productive method of design,” --- David Pellerin, chief technology officer, 
Impulse Accelerated Technologies Inc., in the same statement. 

The participating companies include: Bluespec Inc.;  Celoxica Ltd.; 
CriticalBlue Ltd.;  Impulse Accelerated Technologies Inc.;  Mitrionics
AB; Nallatech Ltd.;  Poseidon Design Systems Inc.;  SystemCrafter
Ltd.; and  Teja Technologies Inc. 
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