
High-level language
synthesis overview

Junsong Liao

Introduction
High Level Language
Synthesis Methodologies
Performance Evaluation
Conclusion and future work
Reference

Introduction

Synthesis is the process of converting a
digital design written in a hardware
description language into a low-level
implementation consisting of primitive logic
gates.
Today, synthesis is at RTL level.

Potential benefits for high level synthesis

Small code size
Faster Modeling, Simulation and Verification
=>Shorter design time
High reusability module: change performance,
Clock, functionality and communication
protocol is easier than RTL module.
Exploring design space

NEW drive forces

Time to market is sometime outweigh
performance
System increase in size and complexity
Availability of high performance FPGA

Two groups people are pushing the
development of HL synthesis:

existing HW designer: expertise in HW system
SW designer and application developer: little
knowledge of HW, but lots of experience in system

Elements of HL synthesis

High level synthesis include two part:
Description Language
Synthesis Methodology

HL Description Language Requirement

Concurrency
The explicit description of concurrency is essential to the optimum
description of parallel algorithms, deterministic synthesis and verification.
It enables designer control over the most critical areas of design.

Timing
Timing is essential for Synthesis to implement clocked processes for

hardware and define the clocks, registers and signals.

Data Types
Both abstract data type and low level hw data type are needed

Communications
Method for communications between functional blocks, I/O and on-chip
resources (potentially between clock domain)

Migration of languages
Tradition high level language, such as C/C++, have no :

notion of time
No event sequencing

Concurrency
But H/W is inherently concurrent

H/W Data Types
No ‘Z’ value for tri-state buses

C type HW description language added new features:
HW timing
Concurrency
Structure

Migration of languages

C-based languages, coupled with block-based
approaches are the most popular method of describing
ESL design and Transaction Level Models (TLM).

Handel-C and SystemC are two popular C-based
languages deployed in ESL design and synthesis.

HardwareC --- Constraint-based
The constraints approach uses labels or tags inside the
code to direct the synthesis. It extend C with a notion of
concurrent processes, message passing, timing
constraints via tagging, resource constraints, explicit
instantiation of models, and template models.

Handel-C, based on the ANSI-
C standard, is a mature, high-
level language that adds a
minimum of easy-to-
understand hardware-oriented
constructs for design
implementation
the concurrency is explicit
using the par (parallel)
statement. Timing is controlled
by rules within the language
and there are additional types
and communications (e.g. the
chan (channel) statement).

Handel-C ---Explicit control,
rules-based timing and additions-based

Handel-C Example Code

Handel-C Example Code

SystemC ----Explicit control and C++ -based

SystemC is a library of C++
classes, global functions,
data types and a simulation
kernel that can be used for
creating cycle-accurate
simulators of hardware
architecture.
The language provides
hardware-oriented
constructs within the context
of C++ as a class library
implemented in standard
C++.

SystemC levels of abstraction
There are currently 3 broad categories of classes, which make up
levels of abstraction:

1. RTL: The RTL classes make up the bulk of SystemC, and
implement a modular structure, process concurrency, and bit-
accurate data types. This layer implements all of the features that
are normally found in the RTL subset of an HDL (e.g. Verilog).

2. Communication: The communication classes implement data
transmission and synchronization protocols which are built on top of
the basic process concurrency controls of the RTL layer. These
classes are typified by channels which pass data through module
ports with a handshake.

3. Verification: Verification classes make up a set of abstractions
which are used for creating test benches. A test bench is really just
a (more or less) abstract model of the design under test’s
environment. Verification classes provide features for randomization,
data logging, and protocol matching.

SystemC Example Code

SystemC Example

The multiplier template is intended to be used inside a thread, or a clock thread
that is sensitive to a clock edge. The approach used in this example is an explicit
description of concurrency. There are explicit clocks in the timing described using
wait statements, and the SystemC data types sc_int and sc_uint are used.

SystemC vs. SystemVerilog
Both languages support concepts such as signals, events, interfaces,
and object orientation, yet each language has its distinct application
focus
SystemC

extends the C++ scope towards hardware
effective for writing abstract TL models for architectural exploration or
performance modeling
Good for HW SW co-design, creating virtual prototypes for early
software development.

SystemVerilog
extends the Verilog scope to object orientation and testbenches
effective for designing advanced testbenches, for both RTL and TL
models
suitable for describing the final RTL design, Good for synthesis
extensive tool support available

News from Industry

SystemC is extended to analog design. an
analog/mixed-signal working group has been proposed
in Open SystemC Initiative (OSCI).

SystemC transaction-level modeling (TLM) and SystemC
Verification standards are going to be brought to the
IEEE this year

A proposed standard SystemVerilog synthesis subset is
getting good reviews from most synthesis providers,
which might overcome the portability problem when
people work with multiple vendors' tools.

Problem definition of HL synthesis

Input: High Level Language program
Output: RTL DHL file or Gate level net-list

Outputting RTL file is more appealing because there
are proven technologies to transfer RTL to GDS-II
(Graphic Data System); and a lot of available tools to
do the job.
Outputting RTL also enable reuse of existing IP

Behavioral vs. RTL synthesis

Register-transfer synthesis
cannot figure out how to share resource, nor can it
change the schedule of operations
No schedule, No allocation

Behavioral synthesis
Schedule & allocation
Behavioral code does not specify where registers
should be in the circuit or the details of the cycle
timing; such decisions are left to the synthesis tool or
the designer

Example

A HDL Code

A revised HDL RTL code to share adder

If (q)
Temp1=w;
Temp2=y;

Else
Temp1=x;
Temp2=z;

End
Temp3=temp1+temp2;
If (q)

a=temp3;
Else

b= temp3;
End

Gajski and Kuhn’s Y-Chart

RLT synthesis

EDIF: Electronic Design
Interchange Format

Behavior Synthesis

Challenges in synthesis

Discover parallelism from sequential description
Naturally, HL language are sequential rather than parallel. The fully

automated synthesis of optimum parallel hardware architectures from
sequential source descriptions, without designer control or guidance,
remains a basic challenge. The explicit description of concurrency is
essential to the optimum description of parallel algorithms, deterministic
synthesis and verification. It enables designer control over the most
critical areas of design.

Explore design space
Little information from constrains to guide synthesis
schedule and allocation interact with each other

Stages of the behavioral synthesis

Various behavioral synthesis tools perform these
activities in different orders using different algorithms.
Some of these activities or perform them iteratively to
converge on the desired solution

Lexical processing
Lexical processing parses the high-level language
source code and transforms it into an internal
representation. Lexical processing for behavioral
synthesis is similar to that used in conventional high-
level language compilation.

Stages of the behavioral synthesis

Algorithm optimization
Optimizations that can be performed on the algorithm
itself include common subexpression elimination and
constant folding.

Control/Dataflow analysis
The result of this process is usually a Control/Dataflow
Graph (CDFG). This determines which values are
needed prior to computation of other values. No concept
of time exists in the CDFG.

Stages of the behavioral synthesis
Library processing
Library processing reads the available libraries and
determines the functional, timing, and area
characteristics of the available parts.

Resource allocation
Resource allocation establishes a set of functional units
that will be adequate to implement the design. In many
behavioral synthesis systems, an initial resource
allocation is performed and subsequently modified during
scheduling and/or binding.

Stages of the behavioral synthesis

Scheduling
Scheduling introduces parallelism and the concept of
time. It transforms the algorithm into an FSM
representation. Using the data dependencies of the
algorithm and the latencies of the functional units in the
library, the operations of the algorithm are assigned to
specific clock cycles. There are often many possible
schedules. Directives that constrain the result with
respect to latency, pipelining, and resource utilization will
affect the schedule that is chosen.

Functional unit binding
Binding assigns the operations of the algorithm to
specific instances of functional units from the library.

Stages of the behavioral synthesis
Register binding
The register binding process allocates registers as needed
and assigns each value to a physical register. Analysis of
the lifetime of each data value can identify opportunities to
use the same physical register to store different values at
different times.

Output processing
The datapath and finite state machine resulting from all of
the previous steps are written out as RTL source code in
the target language. This code can be structured in a
number of ways to optimize the downstream logic
synthesis process or to enhance the readability of the
code.

Stages of the behavioral synthesis

Register binding

Output processing

Functional unit binding

Library processing

Lexical processing

Control/Dataflow analysis
Algorithm optimization

CSP and TRS

Fundamentally, synthesis High Level language requires
technology that can translate sequential software
semantics into parallel, state machine-based hardware
This translation uses languages such as communicating
sequential processes (CSP) and methodologies such as
Term Rewriting Systems (TRS)

CSP:Communicating Sequential Processes
In computer science, Communicating Sequential
Processes (CSP) is a formal language for describing
patterns of interaction in concurrent systems. It is a
member of the family of mathematical theories of
concurrency known as process algebras, or process
calculi.

CSP allows the description of systems in terms of
component processes that operate independently, and
interact with each other solely through message-passing
communication. The relationships between different
processes, and the way each process communicates
with its environment, are described using various
process algebraic operators. Using this algebraic
approach, quite complex process descriptions can be
easily constructed from a few primitive elements.

TRS: Term Rewriting Systems

Term Rewriting Systems (TRS) are a well-understood
formalism from computer science to describing
concurrent systems that embody asynchronous and
nondeterministic behavior in their specifications.

A TRS consists of
"terms" which describe hardware states
"rules" which describe behavior. A "rule" captures
both a state-change (an "action") and the conditions
under which it can occur.

TRS description
A TRS consists of a set of terms and a set of rewriting
rules. The general structure of rewriting rules is:

patlhs if p exprhs

A rule can be used to rewrite a term s if the rule’s left-
hand-side pattern patlhs matches s and the predicate p
evaluates to true. When a rule is applied, the resulting
term is determined by evaluating the right-hand-side
expression exprhs in the bindings generated during
pattern matching.

BASIC SYNTHESIS STRATEGY

Compiler maps a TRS to a synchronous FSM by
Mapping TRS terms to storage elements (e.g.,
registers, register files and other abstract datatypes)
Mapping TRS rules to combinational logic that
generates next state values and enable signals for
storage elements

Circuit synthesis

||

||

||

||

===

Circuit synthesis

This function can be broken down into
its two components: Π and δ.
The Π function determines a rule’s
applicability to a term and has the type,
Typeof (patlhs) Boolean. The δ
function, on the other hand,
determines the
new term in case evaluates to true.

For hardware synthesis , we break down
R into actions on individual storage
elements. For each storage element e
affected by a rule R, δ gives its next
state value. Π is the enable signal of all
the affected registers.

Schedule in TRS

a scheduler that is currently implemented in TRAC that
makes use of conflict-free (CF) relationships.

an exact test for CF relationship between two arbitrary rule
instances is expensive. Instead, TRAC performs several
conservative tests to find as many CF relationships as
possible.

First, two rule instances that read and write non-
overlapping parts of the systems are CF.
If two rule instances do not rewrite the same registers,
if none of the registers affected by the δ of one is used
by the Π and δ of the other, and vice versa, then the
two rules are CF
If pairs of Π’s to conservatively determine when a pair
can never be satisfied simultaneously and thus are CF

Schedule in TRS

After TRAC has establish CF relationships between as
many rule instances as possible, a graph of rule
instances can be constructed by adding an edge
between each non-CF pairs.
Scheduling groups is formed by partitioning the graph
into connected components. Different groups never
interfere and can be scheduled independently.
For each group, a round-robin priority encoder can be
used to map Π to Φ for arbitration.

TRS Execution Semantics

Synthesis problem: Generate a hardware scheduler that
allows execution of as many enabled rules as possible at
each clock without violating the semantics and generate
all the associated control logic.

While (some rules are applicable to s)
♦ choose an applicable rule

(non-deterministic)
♦ apply the rule atomically to s

Given a set of rules and an initial term s

"While behavioral synthesis tools offered some great productivity
advantages over RTL synthesis, we found that most customers were
either not willing to take the QoR [quality of results] hit necessary to
use these products, or they were not willing to complicate their
verification flow,“ --- Synopsys’s chief executive officer Aart de
Geus, 2004

In 2004, Synthesis giant Synopsys Inc. gave up on a 10-year effort
to sell Behavioral Compiler and made an "end-of-life" announcement
for SystemC Compiler, which is based on Behavioral Compiler.
Cadence Design Systems Inc., meanwhile, has not actively
marketed the behavioral synthesis technology it acquired from
Get2Chip Inc

Synthesis performance Evaluation

The design of 2.5
generation
Mobile chip

RTL_based Design
is slow because
of

1. RTL_based co-
simulation is not
feasible because
RTL is too slow.

2. SW design has
to wait unitle the
hardware finish

TRS PERFORMANCE EVALUATION

Synthesis of the GCD Circuit: Euclid’s Algorithm for
finding the greatest common divisor (GCD) of two
integers

TRS PERFORMANCE EVALUATION

Synthesis of the Unpipelined Microprocessor

as the problem size increases, the pay-back of hand optimizations
diminishes while the effort required increases dramatically. This is
evident in the synthesis of this example. The TRAC generated RTL and
a hand-coded Verilog RTL of the unpipelined processor are comparable
both in size and speed.

Other HL synthesis method

block diagram-based algorithm
Popular in special application area, such as DSP
domain.
With a rich set of domain-specific high-level block
libraries

algorithm designers can quickly construct complex DSP
and communication systems at various abstraction levels
and simulate to verify the desired behavior without
tedious coding.

New high level synthesis approach

based on optimized architecture synthesis
using configurable IP as building block.

combines the notion of design-time configurable IP for
processors and accelerators, along with design
exploration and configuration tools to configure the IP
from C applications.
offers the promise of being able to create complete
application engines such as an H.264 video codec or
a CDMA modem—engines that are completely
beyond the scope of traditional behavioral synthesis
technology.

optimized architecture synthesis

Advantages
eliminates the problem of scope by the use of design-
time configurable IP
effectively addresses several major design challenges
such as verification, system-on-chip (SoC) integration,
software integration, and timing and physical closure

limitations
success depends on the available IP Library
applications using this approach could be limited
because of the IP availability

Conclusion

Behavioral synthesis will be a "catalyst" for ESL design
Combined with FPGA, high level synthesis enable rapid
prototyping, rapid evaluation and more architectural
exploration.
Tools available now stirred up a lot of interest but the
performance of these tools has not been proven from
industry

Future work

Future work will focus on how to deliver what HL synthesis promise
to do

Promise 1: reducing the time it takes to go from functional
specification to verified RTL while also accounting for timing and
physical closure.

there's the risk that a designer reduces design capture time, only
to extend the time it takes to verify the design and complete
timing and physical closure
it was difficult to verify the results in any reasonable way,
because the process of high-level synthesis changed the timing
of the code (with regard to the cycles in which actions occurred)
to the extent that it wasn't possible to use the same testbench on
the pre and post-synthesis representations of the design. It is
true for present situation. To Improve the verification capability is
essential.
When it has errors in design, how to debug and correct them

Future work

Promise2: explore alternative implementations to make
trade-offs in area, performance, and power.

It outputs "candidate" RTL implementations along with
reports that help designers pick the best one to route
through an RTL synthesis tool.
How to exert constrains to direct synthesis

the user has little control over the quality of the output. the
input is hard to relate to the output if should the result need
optimizing.

How to explore the design space
Overcome the local optimization to reach the global
optimization

Future work

Promise 3: enable HL reuse for different
area/performance designs.

RTL has an implied micro-architecture that makes it
impossible to re-use at significantly different points of
area or performance
How to design IP in a way that its parameters could
give the explicit of it area and performance; and this
parameters could guide synthesis

News from industry
Early this year, Xilinx Inc. has teamed up with a number of
companies to form a system-level design initiative that it hopes will
set standards for high-level, software-driven synthesis of FPGAs.

“expands the reach of ESL solutions and FPGAs to new applications
and to users who have never before implemented designs in
programmable logic,”---- Wim Roelandts, president and CEO of Xilinx in a
statement.

“Our focus continues to be on providing C-based tools that do not
require low-level FPGA design skills. The Xilinx ESL Initiative helps
spread the message that software-to-hardware is a practical and
productive method of design,” --- David Pellerin, chief technology officer,
Impulse Accelerated Technologies Inc., in the same statement.

The participating companies include: Bluespec Inc.; Celoxica Ltd.;
CriticalBlue Ltd.; Impulse Accelerated Technologies Inc.; Mitrionics
AB; Nallatech Ltd.; Poseidon Design Systems Inc.; SystemCrafter
Ltd.; and Teja Technologies Inc.

Reference
Michael Meredith,“A look inside behavioral synthesis”, EEdesign.com,2004-
04-08
Michael C. McFarland, Alice C. Parker, Raul Carnposano, “Tutorial on High-
Level Synthesis”, IEEE, 25th ACM/IEEE Design Automation Conference,
1988
Chen Chang, “Design and Applications of a Reconfigurable Computing
System for High Performance Digital Signal Processing”, 2002
James C. Hoe and Arvind, “Hardware Synthesis from Term Rewriting
Systems”, 1999
Chris Sullivan, Alex Wilson, Stephen Chappell, “Deterministic hardware
synthesis for compiling high-level descriptions to heterogeneous
reconfigurable architectures” , Proceedings of the 38th Hawaii International
Conference on System Sciences – 2005
Kazutoshi Wakabaysshi, “CyperWorkBench: Integrated Design Environment
Based on C-based Behavior Synthesis and Verification”, IEEE, 2005

