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Introduction

 The classical theory of variable systems is based on
the solutions of linear ordinary differential equations
with varying coefficients. The varying coefficients are
usually functions of an independent variable, also
called the time variable. The time variable is assumed
to be real for physical systems.

i A, (DX () = b, Y1)
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What is an Operator Calculus?

The fundamental (differential) equation of an LTV system is:

n
!
1=0

Use the operator

The fundamental equation converts to:

Use the operator

Q:f(x) a, =1
dx |
D' > d
dXi n _
a.D'y=f(x)

=0

s——D

The fundamental equation (for a system at rest) converts to:

> as'y(0) =f (%)
=0




Results of Using Operator Calculus

Observation 1 — As aresult of using the operator calculus the
homogeneous response has a pattern. The response of homogeneous

equation: i
> a;s'y(x) =0
1=0

IS a linear combination of exponentials:

y(X) = Zn:aiesix

s;'s are roots of the operator (characteristic) equation:




Extending the Operator Calculus: Transformation

n

Expand the fundamental equation: d —=f.(%) = Z f (IAX)AX

Assume an exponential solution (by generalization of the homogeneous solution):

y(x)=e™

The fundamental equation yields: n

Za S! SX_Zn:f(iAx)Ax

where s, is aroot of the operator (characteristic) equation:

lim 2. as, = lim 2. f (iAx)e " Ax

n— o0 I=0 n——o0 1=0

L {f(x)}=F(s) = jo“’o f (x)e ¥ dx




Laplace Transform: Good or Bad?

Introduced by Laplace in 1771 and applied (modern use) by Oliver Heaviside.
Observation 2 — The Laplace transform is obtained as a result of extending the
concept of the operator calculus for solving differential equations, which can
describe the fundamental equation of physical (dynamic) systems.

Observation 3 — The solution exists if there are finite numbers M and ¢, such that :

(%)< Me™  wx=0

Observation 4 — The independent variable x can represent any parameter (of the
system); e.g., the “time.”
Observation 5 — s is the root of the characteristic equation F(S) =0

Hence it is a complex number (or better said, a complex variable) in general.
Observation 6 — If x represents the independent time variable, then by

definition, s represents the (complex) frequency in the transform domain.

Question 1 — Can f(x) be a complex function of x?
Question 2 — Can x represent an independent complex variable?
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Complex Time System?

The single side band (SSB) amplitude modulation (AM) is an example of
“complex-time” systems. The SSB spectrum is obtained by shifting the

spectra
M. (@) = M(e)u(e)
and
M_() = M(o)u(-w)
by @, and — @, respectively, as shown.
| M
|
| /\ _
(&) Magnitude Spectrum of Modulation
Discrete carrier term
Weight = % A [S(H) with weight = Lg Az

t ] + A
A ower Upper

el sideband sideband
o [] [+ t C

{b) Magnitude Spectrum of AM Signal
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SSB System (Cont.)

It can be shown that: m_(t) = l[m(t) + jmh(t)]
m_ () =~ [m() - jm, )]

where M, (t) is the Hilbert transform of m(t)
1 7 m(r

Fourier transform of M, (t) is: M, (®)=—]M(w)sgnw)=M(w)H(®) where:

A = 5
H(w)= jsgn(®) =+ J=¢ * >0

.05
| J=¢e¢?* w<0

H(w) is the transfer function of M, (t) anideal
2

phase shifter that produces the imaginary-time part of the real-time function m, (1)
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SSB System (cont.)

alH (@), s ZH(w)
: z
2
w [0
> >
o) o)
_Z
2

Representation of the transfer function H(w) . an ideal 7 phase-shifter.

2
The USB signal is:
(DUSB(CO) — M+(Q)—C()C) + M_(C()-I—C()C)

In time domain:

— J ol _j ol
Puss (1) =m_ (He™™ + m_(t)e
Substituting for m_(t) and m_(t) in this equation results in:

Pusg (1) =m(t)cos o t —m, (1)sin ot
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Example of an SSB System

For - M(w)=272""" find m_(t) .

] _alw 2a
L HM (@)} =L" {27ze . ‘} 2
t* +a
The Fourier transform of the Hilbert transform of M(w) is:

M, () =—jM(@)sgn@) =— 276 *U(w) —e*U(-o)]

The Hilbert transform is:

nm(t>=F'1{Mh<w>}=—j{ L 1.} =

a—jt a+jt| t'+a’

a+ |t

m.(© = [m®) + jm, 0]
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Characterization of LTV systems

 Consider a single-input single-output (SISO) linear
dynamic system characterized by the fundamental
(differential) equation of an LTV system:

> a0 =2 b Y

X(t) > e >y (D)
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Characterization of LTV systems (Cont.)

Characterization in Operator form:
2.3 (DY) =) b(HD'X(1)
i=0 i=0

L(D,)y(t) = K(D,Dx(t)

where:

y(t) =the output response signal

X(t) =the input (excitation) signal

a;(t) = system variable parameter, known continuous function of time

b, (t) = system time-varying parameter, known continuous function of time
D, =theith differential operator (d'/dt,)

L(-,-)=the system output operator, known bivariate polynomial of time and
differential operator

K(--)=the system input operator, known bivariate polynomial of time and
differential operator
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Observations on the LTV systems

Observation 1 — In general, time clocks of the signal and system are not
synchronized; i.e., the (time) variables of the signal and systems are independent of

each other. L(D,7)y(t) = K(D,7)X(t)

Observation 2 — At any instant of “t” there is a response, which is a specified
function of “1”.

Observation 3 — At any fixed “1” there is a response, which is a specified function of
“tH.

Observation 4 — The system response is a function of variations of observation

parameter “t” and application parameter “t”.
Observation 5 — A zero-input, SISO LTV system described by:

L(D,7)y() =0

IS a linear system that its natural frequencies are varying with “t”. In other words,
the solutions of this equation are exponential functions of time with varying natural

frequencies, as given by: L _ta (7)
y() = Zcie o

. . =0 . .
where &; (T) IS a function of variable coefficients of the fundamental equation
of the system under consideration.
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Extension of the Operator Calculus to
Solution of LTV Systems

Observation 6 — Considering the invariance property of
L(D,7)y(t) = K(D,7)x(t)
with respect to “t” and “t”, and by analogy with the case of LTI systems, we

Interpret this equation as a two-dimensional system model, and shall use a two-
dimensional operator calculus (i.e. two-dimensional Laplace transform (2DLT)) to

find its response. LzD{L(Daf)Y(t)} — LzD{K(D,T)X(t)}
L(S,,8,)Y (S,) = K(s;,8,) X (S))

_K(5,8,)
V)= o X )

K(s,,S,) = Z Bi(Sz)Sli
L(S,,S,) = iA(Sz)S;
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2DLT Solution of LTV Systems

X(t) .+ h(t,7) > y(t)

If X(t,7)=0(t,7) =0(t)o(r) we denote the 2D transfer function, H(s,,S,)

of an LTV system as:

CK(S.5,) < By(s)S
M%) = s ) ZA(S )s

(71+JOO

Where:

(72+JOO

h(t,7) =L ‘20{H(s,,s,)} = H(sl,sz)esltesﬂdslds2

H(s,,s,) and h(t,7) are called the bi-frequency transfer function and
bivariate impulse response, respectively.
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Special Case: LTI System

o(t) > h(t) >y (t)

In the case of LTI systems, coefficients & and . are all constants; H(s,,s,)
reduces to the familiar transfer function

Note that letting S, =S, = j®
results in the inverse of the two-dimensional Fourier transform (2DFT) of H(jo, jo)
as given by:

ht,7) = 1

(27)
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A Word on Time Variable

 The “time variable” is assumed to be a
real variable for physical systems. This
assumption facilitates analysis and
synthesis of fixed (time-invariant) systems
by allowing the Laplace transform
techniques to be used.

 However, the assumption of “real time” Is
shown to be inadequate for realization of
time-varying systems in the transform
domain.
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A New Perspective

« The discussion in this presentation is based on a
different point of view.

e Possibility of system realization through an
examination of the behavior of systems that are

functions of a complex time-variable.
« This approach allows, in effect, a two-dimensional
Laplace transform (2DLT) technique to be used for

the time-varying systems in the same manner that
the conventional frequency-domain techniques are

used in connection with fixed systems.
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To Be Continued ...
Or

The End
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