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Introduction

• The classical theory of variable systems is based on 
the solutions of linear ordinary differential equations 
with varying coefficients.  The varying coefficients are 
usually functions of an independent variable, also 
called the time variable.  The time variable is assumed 
to be real for physical systems.
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What is an Operator Calculus?
The fundamental (differential) equation of an LTV system is:
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Results of Using Operator Calculus
Observation 1 – As a result of using the operator calculus the 
homogeneous response has a pattern.  The response of homogeneous 
equation:
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Extending the Operator Calculus: Transformation

Expand the fundamental equation: xxifxf
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Assume an exponential solution (by generalization of the homogeneous solution):
xsnexy =)(

The fundamental equation yields:
xxifesa

n

i

n

i

xsi
ni

n ∆∆=∑∑
== 00

)(

where sn is a root of the operator (characteristic) equation:

xexifsa
n

i

xs

n

n

i

i
ni

n

n ∆∆= ∑∑
=

−

∞⎯→⎯=∞⎯→⎯ 00
)(limlim

{ } ∫
+∞ −==

0
)()()( dxexfsFxf sxL



University of Windsor Electrical & Computer Engineering Department

2/16/2007 7

Laplace Transform: Good or Bad?
Introduced by Laplace in 1771 and applied (modern use) by Oliver Heaviside.
Observation 2 – The Laplace transform is obtained as a result of extending the 
concept of the operator calculus for solving differential equations, which can 
describe the fundamental equation of physical (dynamic) systems.
Observation 3 – The solution exists if there are finite numbers M and σ0 such that :

0     )( 0 ≥∀< xMexf xσ

.Observation 4 – The independent variable x can represent any parameter (of the 
system); e.g., the “time.”
Observation 5 – s is the root of the characteristic equation
Hence it is a complex number (or better said, a complex variable) in general.

0)( =sF
Observation 6 – If x represents the independent time variable, then by 
definition, s represents the (complex) frequency in the transform domain.

Question 1 – Can f(x) be a complex function of x?
Question 2 – Can x represent an independent complex variable?
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Complex Time System?
The single side band (SSB) amplitude modulation (AM) is an example of 
“complex-time” systems.  The SSB spectrum is obtained by shifting the 
spectra 
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SSB System (Cont.)

:

It can be shown that: [ ])()(
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SSB System (cont.)

Representation of the transfer function

In time domain:
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Substituting for )(tm+ and )(tm− in this equation results in:

ttmttmt chcUSB ωωϕ sin)(cos)()( −=

The USB signal is:
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Example of an SSB System

For ωπω aeM −= 2)( find )(tm+ .
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Characterization of LTV systems

• Consider a single-input single-output (SISO) linear 
dynamic system characterized by the fundamental 
(differential) equation of an LTV system:
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Characterization of LTV systems (Cont.)
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Characterization in Operator form:

)(),()(),( txtDKtytDL =

where:
y(t) = the output response signal
x(t) = the input (excitation) signal
ai(t) = system variable parameter, known continuous function of time
bk(t) = system time-varying parameter, known continuous function of time
Di = the ith differential operator (di /dti)
L(⋅,⋅)= the system output operator, known bivariate polynomial of time and 
differential operator
K(⋅,⋅)= the system input operator, known bivariate polynomial of time and 
differential operator
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Observations on the LTV systems
Observation 1 – In general, time clocks of the signal and system are not 
synchronized; i.e., the (time) variables of the signal and systems are independent of 
each other. )(),()(),( txDKtyDL ττ =
Observation 2 – At any instant of “t” there is a response, which is a specified 
function of “τ”.
Observation 3 – At any fixed “τ” there is a response, which is a specified function of 
“t”.
Observation 4 – The system response is a function of variations of observation 
parameter “t” and application parameter “τ”.
Observation 5 – A zero-input, SISO LTV system described by:

0)(),( =⋅yDL τ
is a linear system that its natural frequencies are varying with “τ”.  In other words, 
the solutions of this equation are exponential functions of time with varying natural 
frequencies, as given by:
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where )(τα i is a function of variable coefficients of the fundamental equation 
of the system under consideration.
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Extension of the Operator Calculus to 
Solution of LTV Systems

Observation 6 – Considering the invariance property of 
)(),()(),( txDKtyDL ττ =

with respect to “t” and “τ”, and by analogy with the case of LTI systems, we 
interpret this equation as a two-dimensional system model, and shall use a two-
dimensional operator calculus (i.e. two-dimensional Laplace transform (2DLT)) to 
find its response. { } { })(),()(),( 22 txDKtyDL DD ττ LL =
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2DLT Solution of LTV Systems

),( τth)(tx )(ty

If )()(),(),( τδδτδτ tttx == we denote the 2D transfer function, ),( 21 ssH

of an LTV system as:
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),( 21 ssH and ),( τth are called the bi-frequency transfer function and 
bivariate impulse response, respectively.
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Special Case: LTI System
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In the case of LTI systems, coefficients and ib are all constants; ),( 21 ssH
reduces to the familiar transfer function
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Note that letting ωjss == 21

results in the inverse of the two-dimensional Fourier transform (2DFT) of ),( ωω jjH

as given by:
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A Word on Time Variable

• The “time variable” is assumed to be a 
real variable for physical systems.   This 
assumption facilitates analysis and 
synthesis of fixed (time-invariant) systems 
by allowing the Laplace transform
techniques to be used.

• However, the assumption of “real time” is 
shown to be inadequate for realization of 
time-varying systems in the transform 
domain.
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A New Perspective

• The discussion in this presentation is based on a 
different point of view.  

• Possibility of system realization through an 
examination of the behavior of systems that are 
functions of a complex time-variable.

• This approach allows, in effect, a two-dimensional 
Laplace transform (2DLT) technique to be used for 
the time-varying systems in the same manner that 
the conventional frequency-domain techniques are 
used in connection with fixed systems.
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To Be Continued …
Or

The End


