

Demosaicing with Improved Edge Direction Detection

Presented By: Anthony Karloff

Overview

- Demosaicing Background
- Basics and Challenges
- Advanced Methods (State of the Art)
- Color Channel Reconstruction
- Conclusion

Demosaicing Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Why Image Reconstruction?

Incomplete color planes from CCD sensors.

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Color Plane Interpolation

• Must Interpolate color planes to re-create image.

Red Channel Interpolation

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Color Plane Interpolation Methods

Pixel Averaging - lose image resolution

Nearest Neighbor

 Poorest Quality

- Bilinear/Spline
 - Color artifacts at edges

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Color Artifacts

• Problem with most simple interpolation algorithms is the presence of color artifacts.

Original Image

Bilinear Interpolation of Bayer Image

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Color Artifacts

• Due to interpolation across edges.

Dark to Light Edge over Bayer Pattern

Resulting Edge after Interpolation

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Advanced Techniques for Color Plane Interpolation

- Use color plane gradients
- Group pixels of similar objects
- Interpolate along edges (not across)
- Interpolate green color plane first
- Interpolate image more than one iteration (refinement)

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Using Gradients for Image Reconstruction

Better estimation of color plane behavior.

Bayer Pattern for Green Centered Pixel

P8 P9

P4 P5 P6

1. GRADIENTS

 Notice that the differences are always from the same color plane.

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Kimmels 'E' Function for Pixel Grouping

• Associates colors of the same object.

Ie. If P5 and Pi are part of the same object, E will be close to unity.

$$Ei(P5) = \frac{1}{\sqrt{1 + Di(P5)^2 + Di(Pi)^2}}$$

Bayer Pattern for Green Centered Pixel

- 1. GRADIENTS 2. GROUPING
- There are eight Ei values for each pixel. One for each neighbor.

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Using Edge Detection (Wide)

• Interpolation is best performed in the same direction as an edge.

P 1	P2	P3	P4	P5
P 6	P 7	P 8	P 9	P10
P11	P12	P13	P 14	P15
P 16	P17	P 18	P19	P20
P21	P22	P23	P24	P25

Bayer Pattern for Red

Centered Pixel

1. GRADIENTS

2. GROUPING

3. EDGE DETECT 3 pxls

Edge detection of radius 3

$$\Delta H_G(P13) = |P12_G - P14_G|$$
$$\Delta V_G(P13) = |P8_G - P18_G|$$

 $\Delta H_R(P13) = |P11_R + P15_R - 2 \times P13_R|$ $\Delta V_R(P13) = |P3_R + P23_R - 2 \times P13_R|$

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Narrow Edge Detection

• Uses narrow edge detection to improve edges by looking between color planes.

$$\Delta H_{GR}(P13) = |P12_{G} + P14_{G} - 2P13_{R}|$$

$$\Delta V_{GR}(P13) = |P2_{G} + P8_{G} - 2P13_{R}|$$

$$\Delta H_{GB}(P13) = \frac{1}{2} (|P7_{B} + P9_{B} - 2P8_{G}| + |P17_{B} + P19_{B} - 2P18_{B}|)$$

$$\Delta V_{GB}(P13) = \frac{1}{2} (|P7_{B} + P17_{B} - 2P12_{G}| + |P9_{B} + P19_{B} - 2P14_{B}|)$$

1. GRADIENTS

Bayer Pattern for Red Centered Pixel

P2

P7

P1

P6

P3

P8

P11 P12 P13 P14 P15

P16 P17 P18 P19 P20

P21 P22 P23 P24 P25

P4

P9

P5

P10

- 2. GROUPING
- 3. EDGE DETECT 3 pxls
- 4. EDGE DETECT 2 pxls

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

- 1. GRADIENTS
- 2. GROUPING
- 3. EDGE DETECT 3 pxls
- 4. EDGE DETECT 2 pxls
- 5. COLOR CORRELATION

Local Inter-Channel Correlation

• Compare average color differences in a 5x5 region to determine whether the Red or Blue channel is more closely related to the green.

$$C_{GR} = \left| \overline{G}_{5x5} - \overline{R}_{5x5} \right|$$
$$C_{GB} = \left| \overline{G}_{5x5} - \overline{B}_{5x5} \right|$$

P 1	P2	P3	P4	P5
P 6	P7	P8	P 9	P10
P11	P12	P13	P 14	P15
P16	P17	P18	P19	P20
P21	P22	P23	P24	P25

Bayer Pattern for Red Centered Pixel

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Improved Edge Detector

Now we can complete the edge detector

$$\Delta H = \Delta H_{R} + \Delta H_{G} + \begin{cases} \Delta H_{GR} & \text{if } C_{GR} \leq C_{GB} \\ \Delta H_{GB} & \text{otherwise} \end{cases}$$

$$\Delta V = \Delta V_{R} + \Delta V_{G} + \begin{cases} \Delta V_{GR} & \text{if } C_{GR} \leq C_{GB} \\ \Delta V_{GB} & \text{otherwise} \end{cases}$$

1. GRADIENTS

2. GROUPING

3. EDGE DETECT 3 pxls -

4. EDGE DETECT 2 pxls

6. IMPROVED EDGE DETECTION

5. COLOR CORRELATION -

Channel Reconstruction

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Channel Reconstruction Overview

- For each pixel we now have: $Ei(Pi) \Delta H \Delta V$
- Approximate the red and blue channels using Bilinear Interpolation.
- Reconstruct the green channel using edge detectors and the approximated red and blue.
- Reconstruct the red and blue channels using the complete green channel.

- 2. GROUPING
- 3. EDGE DETECT 3 pxls -

4. EDGE DETECT 2 pxls

6. IMPROVED EDGE DETECTION

5. COLOR CORRELATION

Channel Reconstruction

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Green Channel Reconstruction

For each Green pixel on a red center...

- **1. GRADIENTS**
- 2. GROUPING
- 3. EDGE DETECT 3 pxls

P7

P17 P18

Centered

P8

- 4. EDGE DETECT 2 pxls
- **5. COLOR CORRELATION**

• A similar approach is taken to the finding the green value at a blue centered pixel

6. IMPROVED EDGE DETECTION

Channel Reconstruction

Background

Basics

Advanced Methods

Channel Reconstruction

Conclusion

Blue and Red Channel Reconstruction

 Blue and red channels are then completed using the full green channel.

Similar approach is taken for completing Red channel.

- **1. GRADIENTS**
- 2. GROUPING
- 3. EDGE DETECT 3 pxls -

P1

P6

P2

P7

P16 P17 P18 P19 P20

P21 P22 P23 P24 P25

Bayer Pattern for Red

Centered Pixel

4. EDGE DETECT 2 pxls

5. COLOR CORRELATION

6. IMPROVED EDGE DETECTION

Conclusion

Background

<u>Basics</u>

Advanced Methods

Channel Reconstruction

Conclusion

Conclusion

- Highly computational and hence slow.
- Not suitable for real-time applications.
- Drastically reduces color artifacts.
- Improved Edge Quality.

Thank You

References

<u>Background</u>	
<u>Basics</u>	
<u>Advanced</u> <u>Methods</u>	[1] D. Darian Muresan, S. Luke, and T. W. Parks, "Reconstruction of Color Images From CCD Arrays," <i>Cornell University, Ithaca NY. 1485,</i>
<u>Channel</u> <u>Reconstruction</u>	[2] R. Kimmel, "Demosaicing: Image Reconstruction from Color CCD Samples" <i>IEEE Transl. J. Image Processing</i> , vol. 8, Sept. 1999.
<u>Conclusion</u>	[3] Xiaomeng Wang, Weisi Lin, Ping Xue, "Demosaicing with Improved Edge Direction Detection" <i>IEEE Transl. J. Image Processing</i> , 2005.