
Using ESL Tools for
FPGA Design
Aws Ismail
FPGA Research Group
University of Windsor

23 May 2007 Using ESL for FPGA Design 1

Acknowledgement
All slide material Related to DK and Handel-C are courtesy of Celoxica
Inc.
Please check www.celoxica.com for more info

23 May 2007 Using ESL for FPGA Design 2

Outline
ESL Overview
Using Celoxica Handel-C & DK

Handel-C Building Blocks
DK Basics
Talking to the outside world
Aggregate Types, Advanced Types

Handel-C & FPGAs
Mapping Handel-C to FPGAs

Demos

23 May 2007 Using ESL for FPGA Design 3

Nomenclature
DK

DK stands for Design Kit
This is the tool, including the GUI, the simulator, and the Hardware Compiler

Handel-C
Handel-C is the programming language
For Hardware design

PDK
PDK stands for Platform Developer’s Kit
This is a package of libraries, tools, source code to help users design using
Handel-C and target supported hardware platforms

FPGA
Field Programmable Gate Array

ESL Overview
What is ESL? And why is it important ?

23 May 2007 Using ESL for FPGA Design 5

ESL Overview
ESL = “Electronic System-Level”

A new generation of EDA tools are emerging in the world of logic design
Designers can now take their algorithms straight into hardware without
having to learn traditional hardware design techniques

What is ESL Design?
A collective classification of new high level tools and associated design
methodologies
General characterization is that it refers to tools that approach the problem at
a higher level of abstraction rather than the mainstream register transfer level
(RTL)

23 May 2007 Using ESL for FPGA Design 6

ESL Overview
ESL design languages

Also referred to as High-level languages (HLL)
Most are close in syntax and semantics to ANSI-C rather than VHDL or
Verilog

ESL for FPGAs
Collection of HLLs, tools, and methodologies that are specifically
optimized for an FPGA platform
Also known as, Platform Level Design
Currently considered a natural evolution for FPGA design tools
Programmable hardware is now easily accessed by a wider and more
software-centric user/designer base

23 May 2007 Using ESL for FPGA Design 7

Why ESL?
First scenario

Most complex algorithms are captured in high-level languages like “C” and
must be converted to a corresponding RTL description
Manually performing C-to-RTL conversion is a tedious and error prone task
ESL gives a direct C-to-Hardware path

Second scenario
Seamless Hardware/Software implementation
ESL tools are used in the design of both the hardware side and the associated
software side of the system
ESL value and appeal, therefore, extends to both HW designers and Software
Programmers

Handel-C Building Block
Handel-C timing, parallel and sequential code, loops and conditions

23 May 2007 Using ESL for FPGA Design 9

Handel-C Concepts
Handel-C is a C-like language

ANSI-C syntax and semantics
Extensions and restrictions for the purpose of hardware design

Designed for synchronous hardware design
Optimized for FPGAs (FPGA-Centric)
Everything that simulates will compile to hardware

Extensions to C allow you to produce efficient hardware
par to introduce parallelism
Arbitrary word widths
Synchronization
Hardware interfaces

23 May 2007 Using ESL for FPGA Design 10

A simple Handel-C Program
set clock = external; //Set clock source

void main() //entry point of the design
{
static unsigned 32 a = 238888872
static unsigned 32 b = 12910669; //Input variables
unsigned 32 Result; //Variable for Result
interface bus_out() OutputResult(Result); //Output the result to pins

while (a != b)
{
if(a > b)
a = a - b;

else
b = b - a;

}

Result = a; //Set the output variable
}

23 May 2007 Using ESL for FPGA Design 11

Handel-C Timing
Handel-C is implicitly sequential
Each statement takes one clock cycle

a = b; //clock cycle 1
a = a + 1; //clock cycle 2

Delay statement to do nothing for a clock cycle
a = b; //clock cycle 1
delay; //clock cycle 2
a = a + 1; //clock cycle 3

Multi-expressions in a single statement is not allowd
a = b++; //not allowed

Breaks the timing model of each assignment taking a clock cycle
Anything with side-effects can be written without them

23 May 2007 Using ESL for FPGA Design 12

Variables
Basic type is the integer

No floating point type in Handel-C
Integers can be either signed or unsigned

Signed numbers are stored in 2’s complement format
Can be any width

signed int 8 a; // signed 8 bit variable "a"
int 8 a; // can omit the signed keyword
unsigned int 8 a; // unsigned 8 bit variable
unsigned 8 a; // can omit the int keyword

Pre-determined widths available
chat (8), short (16), long (32), int32 (32), int 64 (64)
Can specify unsigned

Behave like registers (often referred to as registers also)
Take new value on the clock cycle following an assignment

23 May 2007 Using ESL for FPGA Design 13

par Statement
Expresses what should happen in
parallel
Everything in the subsequent block
happens in parallel
Seq statement says that a section
will be sequential

This is just for clarity
You can leave seq out

// 2 clock cycles
{

a = 1;
b= 2;

}

// 1 clock cycle
par
{

a = 1;
b = 2;

}

23 May 2007 Using ESL for FPGA Design 14

Parallel and Sequential Examples
unsigned 4 a,b;

seq
{

a = 1; //clock cycle 1: a = 1

par
{

a = a + 1; //clock cycle 2: a = 2
b = 5; //clock cycle 2: b = 5

}

par
{

b = b + 1; //clock cycle 3: a = 5
a = b; //clock cycle 3: b = 6

}

}

23 May 2007 Using ESL for FPGA Design 15

par Completion
par block completes when longest
path completes

The par statement can be used to
express both coarse and fine grained
parallelism

Individual statements in parallel
Functions in parallel

a --; //cycle 1

par

{

b++; //cycle 2

seq

{

a++; //cycle 2

a = b; //cycle 3

}

}

b--; //cycle 4

23 May 2007 Using ESL for FPGA Design 16

par Examples
Can read from variable in parallel

Simply wires the two variables
together

Can’t write to same variable in
parallel

Undefined value will be written

No need to use temporary variables
to swap values

par

{

b = a;

c = a;

}

par

{

a = b; //won't work

a = c; //won't work

}

unsigned 4 a,b;

par

{

a = b;

b = a;

}

23 May 2007 Using ESL for FPGA Design 17

Conditional Branching
Control the flow of your program
Conditions take ZERO clock cycles to be evaluated
if

Exactly like C
Can use a delay statement in the else clause to balance execution time

if (a == 0)

a++;

else

delay;

23 May 2007 Using ESL for FPGA Design 18

for Loops
Syntax
for (initialization; test; increment) body
All expressions optional
initialization takes at least a clock cycle
test is evaluated before each iteration of the body
increment expression takes a clock cycle at the end of each execution of
body

This adds an extra clock cycle of delay to the body of any loop
for is not recommended for general use

Use while or do…while
increment can always be done in parallel with the body

23 May 2007 Using ESL for FPGA Design 19

while Loops
while

while (condition) body
condition evaluated before each execution of the body
while statement terminates if condition evaluates to zero

do…while
do body while (condition);
Always executed at least once

while(1)
Runs forever
Remember that any statement following a while(1) will never happen

Advantages over for
Can place initialization and increments of loop counters in parallel with other
code, either inside the body or elsewhere

23 May 2007 Using ESL for FPGA Design 20

Loops – Combinational Cycles
Every branch within a loop must take at least 1 clock cycle
while(1)
{

if(x)
delay;

}
if x is not true, the loop would execute in zero clock cycles, creating an
invalid circuit
Often the DK IDE will issue an error if this happen, but sometimes it will
warn the user
When a warning is issue, the compiler breaks the combinational cycle by
adding an extra delay register
Best practice is to always balance the timing and avoid comb. cycles

23 May 2007 Using ESL for FPGA Design 21

State Machines in Handel-C
The state machine is implicit
Constructed from conditional branches, loops, sequential blocks and
parallel blocks
Handel-C produces a “one-hot encoding” state machine
You can produce very complex state machines with ease
The final result is easy for others to understand

It is very easy for HDL designers to get carried away by explicitly writing
their state machines, which is still possible in Handel-C

23 May 2007 Using ESL for FPGA Design 22

Signals
signal unsigned 8 a;

A signal behaves like a wire
Take the value assigned for the current clock cycle only

Default value is undefined
May get different behavior in simulation compared to hardware

Has to be declared as Static when user decides to give it a default value
Will take this value if not assigned to in a clock cycle
A static signal without an explicit initialization will default to 0

Assignment evaluated before read in a clock cycle
You can use the signal keyword on an array declaration to create an array
of signals
Usually used to break complex expressions into simple, more readable
chunks

23 May 2007 Using ESL for FPGA Design 23

Signals - Example
signal unsigned 8 A;
static signal unsigned 8 B = 5;
static unsigned 8 X = 1, Y = 2;

par
{

A = X * 2;
X = A;
Y = A + 1;

} //X = 2, Y = 3

X = B; //use default value of B, X = 5

Y = A; //Won't work. A is not static and not initialized
//Y now has an undefined value

23 May 2007 Using ESL for FPGA Design 24

Synchronization and Communication
Many programs have independent processes running in parallel
They often need to communicate and synchronize with each other
They often need to share resources such as functions and RAMs
This type of code can be complicated and convoluted to write

Handel-C has two features to make these problems easier to solve
Channels to communicate between processes
Semaphores to control access to critical sections of the code

23 May 2007 Using ESL for FPGA Design 25

Channels
Blocking communication between two sections of code

Both sides block until the other is ready
chan unsigned 8 ChannelA; //ChannelA is an 8 bit channel
unsigned 8 VarX;
channelA ! 3 //send 3 down ChannelA
ChannelA ? VarX //read from ChannelA into VarX
Channel communication takes at least one clock cycle
Can only read from or write once to a channel in parallel
Can use zero width for synchronization only
Channels between clock domains are possible
chanin and chanout for debug

Can attach to text files

23 May 2007 Using ESL for FPGA Design 26

Channels - Example
chan unsigned 4 myChan;
//channel between the two processes

static unsigned 4 Val = 1;

while(1)
{

Val = Val + 1;
MyChan ! Val; //send

delay;
//Delay always happen on
//the same clock cycle

}

static unsigned 4 Count = 1;

while(1)
{ //wait for 0 or more cycles

while(Count != 1)
{
Count--;

}

MyChan ? Count //receive

delay;
//Delay always happen on
//the same clock cycle

}

DK Basics
Introduction to DK Flow, Project Types, DK options, Compiling to HW

23 May 2007 Using ESL for FPGA Design 28

DK Basics
DK is an Integrated Development Environment (IDE)

Familiar look and feel
Compile, Simulate and Debug
Compile to Hardware (Synthesize)
Run other tools, e.g. Place and Route tools, software compilers

Simplified DK design flow:

Write/Edit
Handel-C

Source

Simulate
(DEBUG)

Functions
Correctly?

Synthesize
(EDIF)

Place and
Route

Meets
Timing?

Program
Device

NO
YES YES

NO

EDIF FILE .Bit File

23 May 2007 Using ESL for FPGA Design 29

Project Types
Chip

Generic chip – does not use device specific resources
Specific Chip

Targeted toward a particular device
Use device-specific resources

Core
Discrete piece of code e.g. filter, FIFO
Targeted toward a particular device architecture

Library
Defines functions that can be used in other projects
Like a library file in C (i.e. .lib)
Can be generic, which allows user to target simulation, EDIF, VHDL and Verilog
Can be limited to a particular output e.g. simulation

Other
Board can contain multiple chip projects
System can contain multiple board projects

23 May 2007 Using ESL for FPGA Design 30

Compiling to Hardware
Two routes to HW

EDIF (a netlist description format), where DK does all the synthesis
RTL VHDL/Verilog where third-party tools does synthesis

EDIF is recommended route for FPGAs
Offers tightest integration
Fast and easy to use
Produces good results
Easier to debug for timing issues
VHDL/Verilog for use with favoured synthesis tool, simulation tool,
combining into a larger HDL project

Celoxica’s tools are geared toward FPGAs rather than ASIC
For ASIC the only path is to generate VHDL/Verilog from Handel-C and
then use third-party tool (i.e. Synopsys DC)

23 May 2007 Using ESL for FPGA Design 31

Place and Route
What is P&R ?

Automatic process to place the logic components and determine a path
between them through the dedicated routing resources

Timing constraints are used to get efficient P&R results
Xilinx

DK produces an EDIF file (.edf) and a timing constraints file (.ncf)
Xilinx ISE is used to place and route
edifmake.bat (supplied with PDK), project navigator in ISE

Altera
DK produces an EDIF file (.edf), a TCL script (.tcl) and memory
inisialization file (.mif)
Quartus II software is used to place and route
softmake.bat (supplied with PDK)

23 May 2007 Using ESL for FPGA Design 32

Creating Hardware Output
All Handel-C programs must have

A main function
This is the start point of the design
No integer return value in Handel-C

A clock specification
For example:
set clock = external “A12” with (rate = 50);
“A12” is the name of a clock pin on the device
50 is the clock rate in MHz of the input clock

This passes on timing constraints to the place and route tool
Output interfaces in order to synthesize

For example:
interface bus_out() OutputBus (OutputPort);
Without it, the design will be optimized away to nothing because your design
would sit inside the FPGA and never affect the outside world

Talking to the Outside
World
Input and Output interfaces, PDK introduction

23 May 2007 Using ESL for FPGA Design 34

Interfaces
3 basic types

Bus for interfacing to external devices via pins
Port for when Handel-C is not the top-level module in a design
User-defined for talking to external code (e.g. VHDL, Verilog, EDIF) with
Handel-C as the top-level

Interfaces declarations appear with variable declarations before any
statements
All interfaces have the same basic syntax
interface InterfaceType (InputsToDK) InstanceName (OutputFromDK);

Each interface type has restrictions to the inputs and outputs
Only signed and unsigned types maybe passed over interfaces

23 May 2007 Using ESL for FPGA Design 35

Buses - Examples
#define PinList {“A1”, “A2”, “A3”, “A4”}
unsigned 4 a;
interface bus_out () MyOutBus (unsigned 4 Out = a) with {data = PinList};
//---
interface bus_clock_in (unsigned 8 In) MyInBus();
unsigned 8 B;
B = MyInBus.In;
//--
interface bus_ts (InputPort) Name(OutputPort, ConditionPort);

23 May 2007 Using ESL for FPGA Design 36

Platform Developer’s Kit
PDK has been conceived to accelerate the design process

Lets the designer concentrate on implementing algorithms rather than spend
time dealing with low-level complexities

PDK offers three layers of functionality
Platform Abstraction Layer (PAL): API for portable projects
Platform Support Libraries (PSL): board specific support
Data Stream Manager (DSM): integration between processors and FPGAs

PDK also includes
Support for co-simulating Handel-C with VHDL, Verilog, SystemC, and
Matlab designs
Support for reconfigurable platforms (other than Xilinx and Altera)

Aggregate Types and
Advanced Types
RAMs, ROMs, Multiport RAMs

23 May 2007 Using ESL for FPGA Design 38

RAMs and ROMs
Designers often need efficient random access storage for hardware design
Often only one value per a single clock cycle is needed
FPGAs provide dedicated on-chip RAM resources

Block RAM or Distributed RAM on Xilinx FPGAs
Tri-Matrix RAM or LUT ROM on latest Altera FPGAs

Handel-C therefore provides RAMs and ROMs data types
RAMs and ROMs are not inferred from Arrays

23 May 2007 Using ESL for FPGA Design 39

RAMs and ROMs - Details
ram unsigned 8 a[n];

Can only read from or write to one location in a clock cycle
Shared address bus for read and write

ROM has has no write data bus
Built out of dedicated RAM resources

Use distributed RAM by default (for Xilinx)
Use with { block = “X” } to use specific RAM resource

e.g. ram unsigned 8 a[8] with { block = “M512” }; // use an M512 block in an
Altera Stratix
Use with {block = 1} to allow place and route tools to choose an appropriate
resource

23 May 2007 Using ESL for FPGA Design 40

Arrays versus RAMs
Use arrays for

Parallel access to all elements, for example in pipelined FIR
Use RAMs for

Random access
Large data storage

Use ROM for
Decoding or encoding signals, for example Seven Segment Display
Lookup table of coefficients
Lookup table for results like sine/cosine/tangent, using input as address

Can’t read, modify, and write to a RAM in the same clock cycle
MyRAM[0] += 2; //Won’t work

23 May 2007 Using ESL for FPGA Design 41

Multi-port RAM
mpram
{

wom unsigned 4 Write[32]; //write only port
rom unsigned 8 Read[16]; //read only port

}
Devices have entirely independent read/write ports

Can use both port during the same clock cycle
Virtex-II has two read/write ports on BRAM, one read/write port and one
read port on distributed dual-port RAM
Stratix has two read/write ports on M4K and M-RAM, one read and one write
port on M512 blocks

Example: line buffers in image processing
One pixel in and one out every clock cycle

Handel-C & FPGAs
Technology mapping

23 May 2007 Using ESL for FPGA Design 43

Technology Mapping
The gate-level netlist output of DK contains basic logic gates: OR,XOR,
NOT, and AND
The FPGA itself is built up of lookup tables (LUTs) and other
components
Technology mapping is the process of packing gates into these
components
Each LUT has a fixed propagation delay associated with it, regardless of
what it is doing
DK has its own technology mapping scheme
Example:
unsigned 1 a, b, c, d, e, f;
f = (a ^ b ^ c ^ d) & e; //this will require 2 4-input LUTs

23 May 2007 Using ESL for FPGA Design 44

How Handel-C construct map to HW
Each block has an input signal START and output signal FINISH
The start signal comes from the enclosing block
The main function has its own special start signal
The start signal goes high for one clock cycle when the statement is
executed
a = b;

D F/F

D F/FD F/F

Start FinishQD

CE1

QD

CE

QD

CE

b a

Demos
BCD Counter for simulation (DEBUG), BCD Counter for HW, Simple FIR
Filter

